Atsiliepimai
Aprašymas
The topic of lattice quantum spin systems (or 'spin systems' for short) is a f- cinating branch of theoretical physics and one of great pedigree, although many importantquestionsstillremaintobeanswered. The'spins'areatomic-sizedm- netsthatarelocalisedtopointsonalatticeandtheyinteractviathelawsofquantum mechanics. Thisintrinsicquantummechanicalnatureandthelarge(usuallyeff- tivelyin nite)numberofspinsleadstostrikingresultswhichcanbequitedifferent fromclassicalresultsandareoftenunexpectedandindeedcounter-intuitive. Spinsystemsconstitutethebasicmodelsofquantummagneticinsulatorsandso arerelevanttoawholehostofmagneticmaterials. Furthermore, theyareimportant asprototypicalmodelsofquantumsystemsbecausetheyareconceptuallysimple and yet stilldemonstrate surprisingly rich physics. Low dimensional systems, in 2Dandespecially1D, havebeenparticularlyfruitfulbecausetheirsimplicityhas enabledexactsolutionstobefoundwhichstillcontainmanyhighlynon-trivialf- tures. Spinsystemsoftendemonstratephasetransitionsandsowecanusethemto studytheinterplayofthermalandquantum uctuationsindrivingsuchtransitions. Ofcoursetherearemanycasesinwhichwecan ndnoexactsolutionandinthese casestheycanbeusedasatestinggroundforapproximatemethodsofmodern-day quantummechanics. Thesequantumsystemsthusprovideagreatvarietyofint- estinganddif cultchallengestothemathematicianorphysicalscientist. Thisbookwaspromptedbyaseriesoftalksgivenbyoneoftheauthors(JBP)at asummerschoolinJyvaskyla, Finland. Thesetalksprovidedadetailedviewofhow onegoesaboutsolvingthebasicproblemsinvolvedintreatingandunderstanding spinssystemsatzerotemperature. Itwasthislevelofdetail, missingfromothertexts inthearea, thatpromptedtheotherauthor(DJJF)tosuggestthattheselecturesbe broughttogetherwithsupplementarymaterialinordertoprovideadetailedguide whichmightbeofuse, perhapstoagraduatestudentstartingworkinthisarea. Thebookisorganisedintochaptersthatdeal rstlywiththenatureofquantum mechanicalspinsandtheirinteractions. Thefollowingchaptersthengiveadetailed guidetothesolutionoftheHeisenbergandXYmodelsatzerotemperatureusing theBetheAnsatzandtheJordan-Wignertransformation, respectively. Approximate methodsarethenconsideredfromChap. 7onwards, dealingwithspin-wavet- oryandnumericalmethods(suchasexactdiagonalisationsandMonteCarlo). The coupledclustermethod(CCM), apowerfultechniquethathasonlyrecentlybeen vii viii Preface appliedtospinsystemsisdescribedinsomedetail. The nalchapterdescribesother work, someofitveryrecent, toshowsomeofthedirectionsinwhichstudyofthese systemshasdeveloped. Theaimofthetextistoprovideastraightforwardandpracticalaccountofall of the steps involved in applying many of the methods used for spins systems, especiallywherethisrelatestoexactsolutionsforin nitenumbersofspinsatzero temperature. Inthisway, wehopetoprovidethereaderwithinsightintothesubtle natureofquantumspinproblems. Manchester, UK JohnB. Parkinson January2010 DamianJ. J. Farnell Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Spin Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 1 SpinAngularMomentum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 2 CoupledSpins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1 2. 3 TwoInteractingSpin- 's. . . . . . . . . . . . . . . . . . . . . . . . .
EXTRA 15 % nuolaida su kodu: ENG15
Akcija baigiasi už 17:26:18
Nuolaidos kodas galioja perkant nuo 10 €. Nuolaidos nesumuojamos.
The topic of lattice quantum spin systems (or 'spin systems' for short) is a f- cinating branch of theoretical physics and one of great pedigree, although many importantquestionsstillremaintobeanswered. The'spins'areatomic-sizedm- netsthatarelocalisedtopointsonalatticeandtheyinteractviathelawsofquantum mechanics. Thisintrinsicquantummechanicalnatureandthelarge(usuallyeff- tivelyin nite)numberofspinsleadstostrikingresultswhichcanbequitedifferent fromclassicalresultsandareoftenunexpectedandindeedcounter-intuitive. Spinsystemsconstitutethebasicmodelsofquantummagneticinsulatorsandso arerelevanttoawholehostofmagneticmaterials. Furthermore, theyareimportant asprototypicalmodelsofquantumsystemsbecausetheyareconceptuallysimple and yet stilldemonstrate surprisingly rich physics. Low dimensional systems, in 2Dandespecially1D, havebeenparticularlyfruitfulbecausetheirsimplicityhas enabledexactsolutionstobefoundwhichstillcontainmanyhighlynon-trivialf- tures. Spinsystemsoftendemonstratephasetransitionsandsowecanusethemto studytheinterplayofthermalandquantum uctuationsindrivingsuchtransitions. Ofcoursetherearemanycasesinwhichwecan ndnoexactsolutionandinthese casestheycanbeusedasatestinggroundforapproximatemethodsofmodern-day quantummechanics. Thesequantumsystemsthusprovideagreatvarietyofint- estinganddif cultchallengestothemathematicianorphysicalscientist. Thisbookwaspromptedbyaseriesoftalksgivenbyoneoftheauthors(JBP)at asummerschoolinJyvaskyla, Finland. Thesetalksprovidedadetailedviewofhow onegoesaboutsolvingthebasicproblemsinvolvedintreatingandunderstanding spinssystemsatzerotemperature. Itwasthislevelofdetail, missingfromothertexts inthearea, thatpromptedtheotherauthor(DJJF)tosuggestthattheselecturesbe broughttogetherwithsupplementarymaterialinordertoprovideadetailedguide whichmightbeofuse, perhapstoagraduatestudentstartingworkinthisarea. Thebookisorganisedintochaptersthatdeal rstlywiththenatureofquantum mechanicalspinsandtheirinteractions. Thefollowingchaptersthengiveadetailed guidetothesolutionoftheHeisenbergandXYmodelsatzerotemperatureusing theBetheAnsatzandtheJordan-Wignertransformation, respectively. Approximate methodsarethenconsideredfromChap. 7onwards, dealingwithspin-wavet- oryandnumericalmethods(suchasexactdiagonalisationsandMonteCarlo). The coupledclustermethod(CCM), apowerfultechniquethathasonlyrecentlybeen vii viii Preface appliedtospinsystemsisdescribedinsomedetail. The nalchapterdescribesother work, someofitveryrecent, toshowsomeofthedirectionsinwhichstudyofthese systemshasdeveloped. Theaimofthetextistoprovideastraightforwardandpracticalaccountofall of the steps involved in applying many of the methods used for spins systems, especiallywherethisrelatestoexactsolutionsforin nitenumbersofspinsatzero temperature. Inthisway, wehopetoprovidethereaderwithinsightintothesubtle natureofquantumspinproblems. Manchester, UK JohnB. Parkinson January2010 DamianJ. J. Farnell Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Spin Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 1 SpinAngularMomentum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 2 CoupledSpins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1 2. 3 TwoInteractingSpin- 's. . . . . . . . . . . . . . . . . . . . . . . . .
Atsiliepimai